Referenzprojekte

Abbrechen
  • Konventionelle Aktoren auf FGL-Basis überzeugen durch ihre hohe Energiedichte, kompakte und leichte Bauweise, geräuschlosen Betrieb sowie einfache Ansteuerung. Dennoch sind sie in ihrer Hubbewegung auf wenige Millimeter begrenzt. Diese Einschränkung limitiert ihren Einsatz in Anwendungen, die größere Verfahrwege bei gleichzeitig geringem Bauraum und Gewicht erfordern. Zudem benötigen viele herkömmliche Aktoren kontinuierlich Energie, um eine Position zu halten. Durch Kombination von FGL-Technologie mit dem Inchworm-Prinzip ist es gelungen, einen innovativen FGL-Inchworm-Aktor zu entwickeln, der die Vorteile beider Konzepte vereint.

    mehr Info
  • Die europäische Fertigungsindustrie steht vor mehreren Herausforderungen. Dazu gehören u. a. der Übergang von der Massenproduktion zur kundenspezifischen Fertigung, die ständig zunehmende Komplexität der Produktionslinien, der Wettbewerb mit Ländern mit niedrigem Einkommen, das Risiko von Pandemien und die Erwartung niedriger Fehlerquoten. Das Projekt GreenBotAI zielt darauf ab, die Reaktions- und Latenzzeiten von Industrierobotern zu reduzieren, die Bahnplanung zu optimieren und die fließende Ausführung bestimmter Aufgaben zu ermöglichen. Das Projekt befasst sich mit der Entwicklung der notwendigen Hardwarekomponenten sowie modernster Deep-Learning-Methoden zur Überwachung, Datenverarbeitung und Fehlerkontrolle, um eine neue Generation der Robotik zu schaffen. Ein Hauptziel des Projekts ist die Senkung des Energieverbrauchs für Roboteraufgaben um 50 %.

    mehr Info
  • Bipolarplatten für Brennstoffzellen werden nach aktuellem Stand der Technik überwiegend aus austenitischen Edelstählen mit einer Blechdicke im Bereich von 75 µm bis 100 µm hergestellt. Das Verhältnis von beanspruchtem Bauraum zur daraus erzielbaren Leistung kann mit einer Blechdickenreduzierung auf 50 µm weiter verbessert werden. Für die Herstellung dieser ultradünnen Bipolarplatten haben wir eine Prozesskette entwickelt.

    mehr Info
  • © Pixabay

    Das Batteriesystem ist die zentrale Komponente eines E-Autos. Partner aus Forschung und Industrie demonstrieren im Projekt CoolBat, wie innovative Konstruktionsprinzipien, Materialien und Produktionsverfahren dazu beitragen, Gehäuse für diese Batteriesysteme klimafreundlich herzustellen und zugleich bessere Gebrauchseigenschaften zu integrieren. Die Batteriegehäuse werden dabei leichter und sparen bis zu 15 Prozent Kohlendioxid (CO2) – und das bei höherer Leistung des Batteriesystems, schnellerem Laden sowie mehr Reichweite. Darüber hinaus soll die Herstellung der Batteriegehäuse im Vergleich zu bisher angewandten Verfahren deutlich effizienter werden.

    mehr Info
  • Gebrauchtwagen oder Unfallautos werden oftmals mit hohem Energieaufwand verschrottet, selbst wenn viele Teile noch funktionsfähig sind. Im Projekt EKODA entwickeln wir eine bessere Alternative: In einem komplexen Testverfahren werden zunächst alle Komponenten untersucht. Ein Bewertungssystem gibt dann Empfehlungen, wie die Komponenten weiterverwendet werden könnten. Das Konzept optimiert die Lebensdauer der einzelnen Teile und ermöglicht den Aufbau einer nachhaltigen Kreislaufwirtschaft im Bereich der Mobilität. Batterien, Getriebewellen oder Zahnräder könnten so auch in Anwendungen außerhalb des Automobils landen.

    mehr Info
  • © istock: Chesky_W

    Das EU-Förderprojekt ZIRKEL strebt die automatisierte, wirtschaftlichere und produktivere Demontage von Traktionsbatteriesystemen und Elektromotoren an. Dazu sollen produktionstechnische Strategien für die Kreislaufwirtschaft entwickelt werden. Das beinhaltet die automatisierte Zerlegung der Komponenten mittels KI-Algorithmen und Computervision. Das Fraunhofer IWU ist maßgeblich an der Entwicklung und Optimierung des Demontageprozesses für Elektromotoren beteiligt.

    mehr Info