

Alexander Pierer, Fraunhofer IWU – Chemnitz

5. FACHTAGUNG zum Stanzen und Umformen

Überblick über Brennstoffzellen & Elektrolyseure

Brennstoffzellen in Mobilitätsanwendungen

Aktivitäten am Fraunhofer IWU – Abt. Automation

Silberhummel (Oldtimer-Nachbau mit Brennstoffzelle)

PRECISION - SWISS MADE

[Meiler, 2013]: p_{ein} = 2,2 atm

[Meiler, 2013]: $p_{ein} = 1.1 atm$ Modell: $p_{ein} = 1.1 atm$

Stromdichte J [A/cm²]

1

Modell: $p_{sin} = 2.2 atm$

0.5

Fraunhofer IWU - Abt. Automation:

- → Simulationsmodelle des elektro-chemischen Verhaltens und des Antriebssystems ("von der Zelle bis zur Traktion")
- →Entwicklung von Monitoring-/Steuerungslösungen für H2-betriebene Fahrzeuge
- →Prüfsysteme zur Wasserstoffversprödung
 →Inline-Qualitätsüberwachung

Entwicklungsziele im Brennstoffzellenbereich

Der Produktionsprozess für Brennstoffzellen hat immer noch einen starken Manufakturcharakter.

Performance

Verbesserung der Effizienz und Leistung von Brennstoffzellen

Kosten

- Entwicklung von kostengünstigen BZ-Stacks und BOP-Komponenten (Peripheriesysteme)
- Fortschrittliche Ansätze für die Großserienfertigung inkl. Qualitätskontrolle
- Ausschuss als Kostentreiber

Langlebigkeit und Nachhaltigkeit

- 8.000 h leichte Nutzfahrzeuge, 30.000 h schwere Nutzfahrzeuge, 80.000 h Stromversorgung
- Zuverlässigkeit und Robustheit des Systems unter dynamischen und rauen Betriebsbedingungen
- Verbesserte Kontrollsysteme und Pr
 üfverfahren f
 ür eine ressourcenschonende und energieeffiziente Produktion

© Max Wei, Simon Thompson, Elizabeth Connelly, Neha Rustagi, Hossein Ghezel-Ayagh, Chris Capuano, Josh Mermelstein, DOE Hydrogen and Fuel Cells Program Record: Reversible Fuel Cell Targets, 6/23/20, Available: https://www.hydrogen.energy.gov/pdfs/20001-reversible-fuel-cell-targets.pdf

2

Übersicht wichtiger Komponenten von Brennstoffzellen / Elektrolyseuren

C Encyclopædia Britannica, Ini

- Kühlung

Fraunhofer FIBRO Rozio

unidor

BRUDERER PRECISION - SWISS MADE

Gas Diffusion Layer (GDL) (FC: 100 - 200 µm, EL: 200 - 300 µm) + Microporous layer (MPL) $(d = 20 - 100 \mu m)$

(Kohlepapier/-fasergeflecht/Vlies)

- Elektrische Leitfähigkeit
- Gasdurchlässigkeit
- Korrosionsbeständigkeit
- Mechanische Stabilität
- Förderung des Wasserabflusses

Endplatten und mech. Stackaufbau

- Homogene Druckverteilung
- Kontaktierung der Bipolarplatten
- Ableitung der Prozesswärme
- Mechanische Stabilität
- Hohe Formtreue
- Chemische Beständigkeit
- Gewicht

Ouellen: Encyclopedia Britannica, Inc., Dana, SGL, Chemours, fuelcellstore.com, KIT - IPEK, Joachim Scholta 2020

Überblick Herstellverfahren von Bipolarplatten und Einzelzellen

Produktionstechnologien

Verfahrensgegenüberstellung

Von der Bipolarplatte zum Stack

Montageübersicht

Inline-Prüftechnik – 2D und 3D

Referenzprüfkette mit Qualitätsanforderungen Bipolarplatte

Prozessschritte und Prüfaufgaben

Anlieferung Bandmaterial

- o Oberflächenqualität
- Dickentoleranz
 Bandmaterial
- o Mechanische Kennwerte

Quelle: Coil-Monitoring UVB Technik s.r.o.

Umformen

Vereinzeln & Schneiden

- Verschleißerkennung Werkzeug
- Risserkennung Bipolarhalbplatte
- Detektion von Geometrieabweichungen (v.a. im flowfield)
- o Erkennung unvollständig ausgestanzter Bereiche
- Erfassung von Gratbildung an den Schnittkanten
- Bruch oder Verformung von Bauteilen
- o Erfassung von Einschnürungen
- o Ebenheitsprüfung

Reinigung

 Erkennung von Rückständen auf den Bipolarhalbplatten

Quelle: UV-Fluoreszenzmessung organischer/öliger Benetzungen F-Scanner, Fraunhofer IPM

Referenzprüfkette mit Qualitätsanforderungen Bipolarplatte

Fehlermerkmale und Erfassungsmethoden

Fraunhofer

BRUDERER

PRECISION - SWISS MADE

	Maßhaltigkeitsfehler		Oberflächenfehler		Herstellbarkeitsfehler	
			0	Einfallstellen		
Beschreibung	0 /	Abweichungen zwischen Ist- und Soll-Geometrie Konturfehler (innen und außen)	0	Druckstellen	0	Reißer
			0	Welligkeiten	0	Einschnürungen
	0		0	Kontaminationen	0	Falten
	0	Beschichtung (Dicke)	0	Anhau- und Nachlaufkanten		
			0	Beschichtung (homogen?)		
Bewertung	0	stichprobenartige Prüfung mittels optischer Messsysteme oder mechanischer Messaufnahmen	0	(optische) Detektion der Abweichungen des visuellen Erscheinungsbildes	0	Besonders kritische Fehler, da Funktionalität beeinträchtigt
	0	3D-Formerfassung (Lichtschnitt, Streifenprojektion)	0	2D-Bildverarbeitung (klassische Methoden + ML-basierte Methoden)	0	sein kann Einsatz geeigneter Beleuchtungsstrategien und
	0	Bildverarbeitung oft mit telezentrischen Systemen	0	Beleuchtungsstrategien + Bildverarbeitung		Sensorik

Überblick Anforderungen und messtechnische Randbedingungen

Multi-Kamera-System – 2D-Oberflachenprüfung

Fraunhofer FIBRO ROZIO

Hochauflösender Laserlinienscan – 3D-Geometrie

unidor

PRECISION - SWISS MADE

- Inline-Fähigkeit der Sensoren und Messprinzipien (2D/3D)
- Bestimmung der geeigneten Sensoranordnung
- Sicherstellung einer vollständigen
 Oberflächenabdeckung bei geforderter Auflösung
- Begrenzung der Sensoren (z.B. Datenrate/-menge, Auflösung, Genauigkeit, Messbereich ...)
- Verlustfreie Datenübertragung (hohe Datenraten bis zu mehreren GB/s)
- Schnelle Erfassung und Verarbeitung (Multi-Core/GPU)
- Handelt es sich um einen funktionskritischen Fehler oder nur um eine tolerable Anomalie?
- Wie sensitiv ist das Prüfsystem einzustellen (Prüfschlupf, Pseudoausschuss)?

Gängige Messsysteme im Überblick

Lichtschnitt/Laserlinienscan

- Erfassung in Bauteilbewegung (32 mm/s @ 16 kHz)
- 🗸 Bis ca. 2 μm-Punktabstand

Fraunhofer

- Messzeit = Durchlaufzeit Bauteil (ohne Verarbeitung)
- P Hochauflösender Encoder für Triggerung
- X Verfälschung durch Wippen, Vibrationen, unruhigen Bahnlauf

Streifenprojektion

- ✓ Erfassung lateralen Messfeldes (Single-Shot)
 X Bauteilstillstand erforderlich
 ? Messzeit 0,4 s 2 s (ca. 2.2 Mio. Punkte/s)
 - Lateraler Punktabstand x/y 40 µm

Datenmengen & Verarbeitungszeiten – Ein Beispiel ...

STL Depth Map

Fraunhofer FIBRO Razio

[hm

Name Größe Scandaten pcd_2micron.csv 1.256.441 KB pcd_2miron.npy 295.735 KB stl_2micron.csv 10.614.167 KB stl 2miron.npy 1.709.102 KB z_diff_map_2micron.csv 985.808 KB z_diff_map_2micron.npy 273.438 KB

- Aufbau: Linienscanner Keyence LJX8020, Encoder 130 k Inkr/U
- Scanfeld auf BPP: 7,3 mm x 70 mm, 2 µm laterale Auflösung
- PC: Win 10, Intel i7-9700K 3.6 GHz DualCore, 16 GB-RAM
- → Datenmenge: 86,5 Mio-Punkte / Dateigröße: ca. 300 MB binär, 1,26 GB als CSV

PRECISION - SWISS MADE

 \rightarrow Verarbeitungsdauer: ca. 18 min (Python-Script)

TRaystems gmbh

Beispiel - Geometrieabweichungen & Ebenheit

Geometrieabweichungen & Ebenheit

o Datenqualität der Punktewolke an steilen Flanken bzw. aufgrund hoher Reflexion lückenhaft

Beleuchtungskonzepte

Vergleich verschiedener Beleuchtungskonzepte zur Hervorhebung von Geometrie-, Fertigungs- (Umform-) und Schweißfehler mit optischen 2D-Sensoren

Dunkelfeld

Geeignet für Herstellbarkeitsfehler Nicht geeignet für Schweißnaht- oder Oberflächenprüfung

> unidor TR systems ambh

BRUDERER PRECISION – SWISS MADE

Fraunhofer

Dom (allseitig diffus)

Gut geeignet für Schweißnähte

Koaxial

Gut geeignet für Schweißnähte & Oberflächenanomalien

Abdeckungsanalyse

Abdeckungssimulation von Multi-Kamera-Systemen:

Orthogonale Anordnung

V-Anordnung

Quelle: L.Gjakova (Fraunhofer IWU)

Prinzipielle Datenverarbeitung

Verarbeitungsprogramm je Kamera:

Auflösung, Geschwindigkeit und Rechenzeit - immer ein Kompromiss ...

Fazit

Fraunhofer

- 3D-Messysteme erzeugen i.d.R. sehr hohe Datenmengen, deren Inline-Verarbeitung oft noch Probleme bereitet
- 3D-Messsysteme erfordern Bauteilstillstand oder störungsarme Bauteilbewegung
- 2D-Messystem in Inline-Anwendungen einfacher zu beherrschen
- 2D-Messysteme liefern nur indirekt Informationen zu 3D-Merkmalen abhängig von der Kamera-Beleuchtungsanordnung
- Vollständige und ggf. redundante Abdeckung der Überwachungsbereiche ist zu beachten und kann simulativ betrachtet werden
- Detektierbare min. Fehlergröße, Bauteilgeschwindigkeit und Rechenleistung sind mit einander verknüpft. Sollen immer feinere Fehler bei gleicher Geschwindigkeit detektiert werden, steigt die erforderliche Rechenleistung überproportional